

+ Kinetics and Equilibrium

Kinetics examines the rate at which reactions proceed. Rate laws are used to describe how reactant concentrations affect a reaction's rate. Rate constants (k) in rate law expressions are determined experimentally at a given temperature.

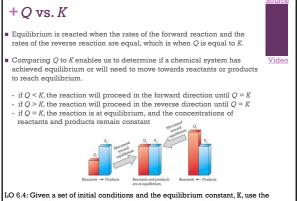
 Equilibrium describes the state at which the rates of the forward reaction and the reverse reaction are constant and equal.

 If the rates are initially unequal (the system is not at equilibrium), the faster direction depletes its reactants, which feeds back to slow down that direction.

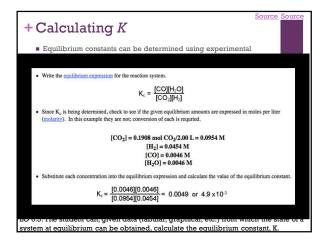
 At the same time, the slower direction accumulates its reactants, speeding up the slower direction.

 These loops continue until the faster rate and the slower rate have become equal.

 In the graph to the right, after equilibrium has been achieved, additional hydrogen gas is added to the system. The system then consumes both H₂ and N₂ to form additional NH₄ molecules, eventually reestablishing

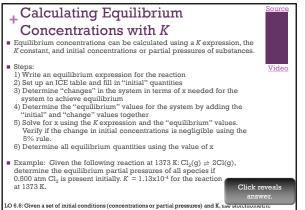

equilibrium.

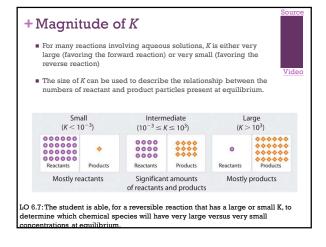
g


Equilibrium reestablished

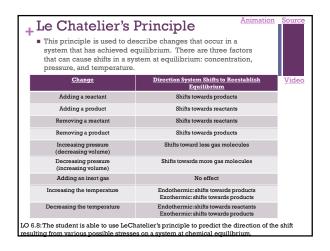
Initial .

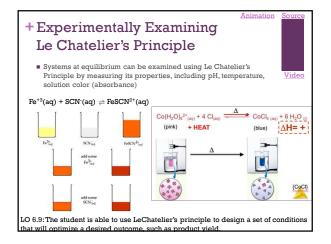
10 6.3: The student can connect kinetics to equilibrium by using reasoning, such as LeChatelier's principle, to infer the relative rates of the forward and reverse reaction


tendency of Q to approach K to predict and justify the prediction as to whether the reaction will proceed toward products or reactants as equilibrium is approached.

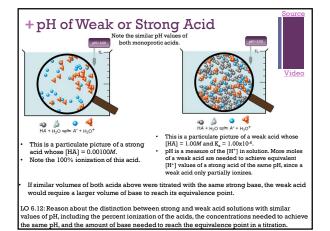


				S	ource Source
• Write the equilibrium expression for the reaction.					
	$K_{c} = \frac{[N_{2}][H_{2}O]^{2}}{[NO]^{2}[H_{2}]^{2}}$				
Check to see if the amounts are expressed in moles per liter (molarity) since	K_c is being . In this example they are.				
 Create an <u>ICE chart</u> that expresses the initial concentration, the change in co in the concentrations of each species and the equilibrium concentrations. Fr 			s in the reaction.	From the o	chart you can determine the chang
		NO	H ₂	N ₂	H ₂ O
Initial Concentration (M)		1000	0.0500	0	0.100
Change in Concentration (M)		-2x	-2x	+ x	+2x
Equilibrium Concentration (M)		0.062			
The change in concentration of the NO was $(0.062 \text{ M} - 0.100 \text{ M}) = -0.038 \text{ M}$. The changes in the other species must agree with the stoichiometry dictated by the bala increase by + 0.038 M. From these changes we can complete the chart to find the	ince equation. The hydrogen will also chan	ge by - 0.038 M, v			
	NO	H ₂	N ₂		H ₂ O
Initial Concentration (M)	0.100	0.0500	0		0.100
Change in Concentration (M)	- 0.038	- 0.038	+0.019		+ 0.038
Equilibrium Concentration (M)	0.062	0.012	0.019		0.138
· Substitute the equilibrium concentrations into the equilibrium expression an	d unlive for K				
· opposing an equilation constraints are an equilation of constraints	a state on the				
	$= \frac{[0.019][0.138]^2}{[0.062]^2[0.012]^2} = 650 \text{ or } 6.5$	102			
R,	[0.062] ² [0.012] ² 000 01 0.0 3				
LO 6.5: Given data (tabular, graph	ical etc.) from wh	ich the d	state of	0.0110	tom at
					stern at
<u>equilibrium can be obtained, calc</u>	<u>uiate the equilibri</u>	um con	stant, K.		

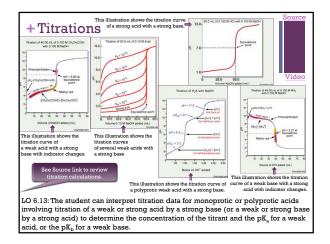



LO 6.6: Given a set of initial conditions (concentrations or partial pressures) and K, use storumetric relationships and the law of mass action (Q equals K at equilibrium) to determine qualitatively and/or quantitatively the conditions at equilibrium for a system involving a single reversible reaction.

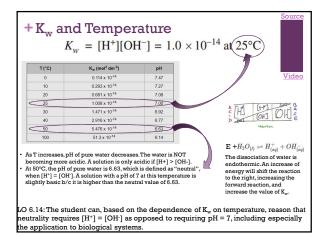
 Changes to Q and K for a System at Equilibrium Some changes that occur to a system at equilibrium will affect the reaction's current position (Q). Others will affect the value of K 					
<u>Change</u>	<u>Direction System Shifts to</u> <u>Reestablish Equilibrium</u>	Effect on Q or K	Video Source		
Adding a reactant	Shifts towards products	Q decreases			
Adding a product	Shifts towards reactants	Q increases			
Removing a reactant	Shifts towards reactants	Q increases			
Removing a product	Shifts towards products	Q decreases			
Increasing pressure (decreasing volume)	Shifts toward less gas molecules	Q can increase, decrease, or remain constant			
Decreasing pressure (increasing volume)	Shifts towards more gas molecules	depending on ratio of gas molecules between reactants and products			
Adding an inert gas	No effect	Q doesn't change			
Increasing the temperature	Endothermic: shifts towards products Exothermic: shifts towards reactants	Endothermic: K increases Exothermic: K decreases			
Decreasing the temperature	Endothermic: shifts towards reactants Exothermic: shifts towards products	Endothermic: K decreases Exothermic: K increases			
LO 6.10:The student is able to connect LeChatelier's principle to the comparison of Q to K by explaining the effects of the stress on Q and K.					

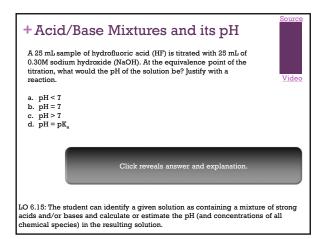

_

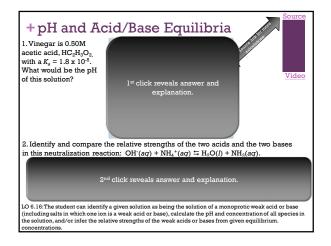
-

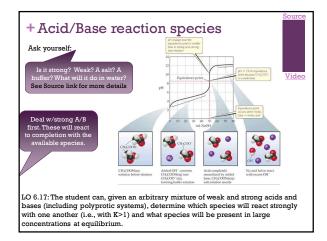


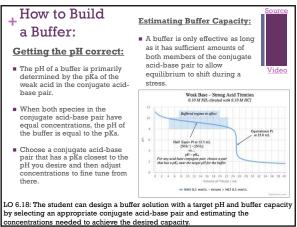
ionize in aqueous solution, disassociating into few H_3O^+ ions and the additional anion.

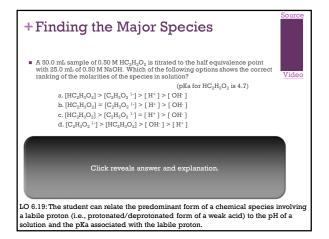

LO 6.11: The student can generate or use a particulate representation of an acid (strong or weak or polyprotic) and a strong base to explain the species that will have large versus small concentrations at equilibrium.









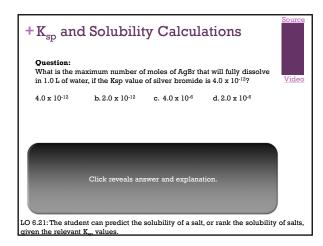




+ The Buffer Mechanism

A buffer is able to resist pH change because the two components (conjugate acid and conjugate base) are both present in appreciable amounts at equilibrium and are able to neutralize small amounts of other acids and bases (in the form of $\rm H_2O^+$)

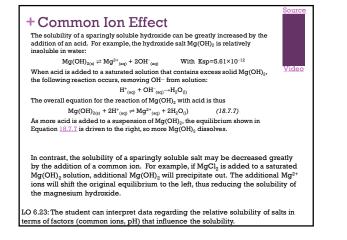
and OH) when they are added to the solution. Take, for example, a fluoride buffer made from hydrofluoric acid and NaF. A model fluoride buffer would contain equimolar concentrations of HF and NaF. Since they are a weak acid and a weak base, respectively, the amount of hydrolysis is minimal and both buffer species are Video present at, effectively, their initial supplied concentrations.

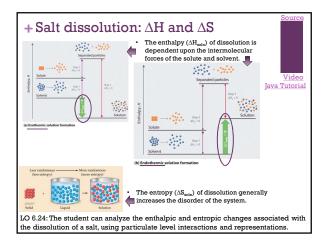

If a strong acid is added to the HF/F buffer, then the the added acid will react completely with the available base, F° . This results in a nearly unchanged $[H_3O^+]$ and a nearly unchanged pH. $H_3O^+_{(aq)} + F^*_{(aq)} \rightarrow HF_{(aq)} + H_2O_{(l)}$

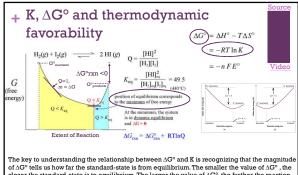
If a strong base is added to the HF/F buffer, then the added base will react completely with the available acid, HF. This results in a nearly unchanged $[H_3O^+]$ and a nearly unchanged pH. $H\!F_{(aq)} + O\!H^{\text{-}}_{(aq)} \xrightarrow{\rightarrow} F^{\text{+}}_{(aq)} + H_2O_{(l)}$

The slight shift in pH after challenge is governed by the hydrolysis equilibrium of HF, based on the new HF and $F^{\rm c}$ concentrations:

 $H\!F_{(aq)} + H_2 O_{(l)} \rightleftharpoons F^-_{(aq)} + H_3 O^+_{(aq)}$


LO 6.20: The student can identify a solution as being a buffer solution and explain the buffer mechanism in terms of the reactions that would occur on addition of acid/base




+ Find a K _{sp} f	rom so	lubility	data Source				
Using a conductivity meter an solutions made by dissolving	id a pH probe, a stude	nt determined the molar s	olubility of saturated				
solutions made by dissolving	Compound	Solubility (mol/L)	snown in the table below:				
	Ba(OH)2	0.11 M					
	Ca(OH)2	0.011 M	Video				
	Cr(OH)3	1.3 x 10 ⁻⁸ M					
	Sn(OH)2	1.1 x 10 ⁻⁹ M					
Which of the hydroxide salts above has the smallest K _{ep} value? a. Ba(OH) ₂ b. Ca(OH) ₂ c. Cr(OH) ₃ d. Sn(OH) ₂ Click reveals answer and explanation.							
Click Ie	veais answer	and explanatio	n.				
LO 6.22: The student can interpret data regarding solubility of salts to determine, or rank, the relevant Ksp values.							

The key to understanding the relationship between ΔG° and K is recognizing that the magnitude of ΔG° tells us how far the standard-state is from equilibrium. The smaller the value of ΔG° , the closer the standard-state is to equilibrium. The larger the value of ΔG° , the further the reaction has to go to reach equilibrium.

LO 6.25: The student is able to express the equilibrium constant in terms of ΔG ° and RT and use this relationship to estimate the magnitude of K and, consequently, the thermodynamic favorability of the process.

